Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains.

نویسندگان

  • Kamfai Chan
  • Sherwood Casjens
  • Nikhat Parveen
چکیده

Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of ospC Expression Variation among Borrelia burgdorferi Strains

Outer surface protein C (OspC) is the most studied major virulence factor of Borrelia burgdorferi, the causative agent of Lyme disease. The level of OspC varies dramatically among B. burgdorferi strains when cultured in vitro, but little is known about what causes such variation. It has been proposed that the difference in endogenous plasmid contents among strains contribute to variation in Osp...

متن کامل

Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the...

متن کامل

Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi

The genome of Borrelia burgdorferi is composed of one linear chromosome and approximately 20 linear and circular plasmids. Although some plasmids are required by B. burgdorferi in vivo, most plasmids are dispensable for growth in vitro. However, circular plasmid (cp) 26 is present in all natural isolates and has never been lost during in vitro growth. This plasmid carries ospC, which is critica...

متن کامل

Cloning and sequencing of a species-specific nucleotide fragment of Borrelia burgdorferi sensu stricto, which is repeated in several plasmids of the species.

Among the etiological agents of Lyme disease, Borrelia burgdorferi sensu stricto strains carry a 16 kb plasmid, which did not hybridize to plasmids of B. garinii and B. afzelii strains. A 1271 bp DNA fragment of the 16 kb plasmid was cloned. It hybridized to several plasmids of this species (16, 27 and 55 kb). Sequencing of the cloned insert revealed a 327 bp ORF coding for a 14 kDa protein of ...

متن کامل

Polymerase chain reaction primers and probes derived from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever.

By cloning and sequencing the flagellin gene of Borrelia hermsii and comparing this sequence with that of the corresponding gene from B. burgdorferi, I identified a central region within the two genes which showed a reduced level of sequence similarity. Oligonucleotide sequences selected from this region produced species-specific amplimers when used in polymerase chain reaction experiments. Thu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 2012